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Abstract— We propose a predictive runtime monitoring
framework that forecasts the distribution of future positions
of mobile robots in order to detect and avoid impending
property violations such as collisions with obstacles or other
agents. Our approach uses a restricted class of temporal logic
formulas to represent the likely intentions of the agents along
with a combination of temporal logic-based optimal cost path
planning and Bayesian inference to compute the probability of
these intents given the current trajectory of the robot. First,
we construct a large but finite hypothesis space of possible
intents represented as temporal logic formulas whose atomic
propositions are derived from a detailed map of the robot’s
workspace. Next, our approach uses real-time observations of
the robot’s position to update a distribution over temporal logic
formulae that represent its likely intent. This is performed
by using a combination of optimal cost path planning and
a Boltzmann noisy rationality model. In this manner, we
construct a Bayesian approach to evaluating the posterior
probability of various hypotheses given the observed states and
actions of the robot. Finally, we predict the future position
of the robot by drawing posterior predictive samples using a
Monte-Carlo method. We evaluate our framework using two
different trajectory datasets that contain multiple scenarios
implementing various tasks. The results show that our method
can predict future positions precisely and efficiently, so that the
computation time for generating a prediction is a tiny fraction
of the overall time horizon.

I. INTRODUCTION

Detecting and preventing imminent property violations is
an important problem for the safe operation of autonomous
robots in highly dynamic environments. Such violations
include collisions between multiple robots, failure to respond
to events or robots entering restricted areas. Detecting such
violations at design time is often impractical: behaviors are
dependent on possible environmental conditions. The space
of possible behaviors is too large, or may not be com-
pletely known to the designers. Thus, runtime monitoring
approaches have recently gained popularity. However, these
approaches require a model of the robot’s motion to predict
its future position. Recent approaches have employed such
models to detect the possible positions that a robot can
reach in the near future using physics-based dynamic models
and reachability analysis [1]–[4]. Similarly, a pattern-based
approach predicts future positions based on historical data
and predicts likely future positions [5] (Cf. [6] for a survey
of trajectory prediction for dynamic agents).

However, forecasting future moves by extrapolating the
past trajectories is often likely to fail unless we also have a
specification of the task (or current subtask) that a robot is
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Fig. 1. The proposed Bayesian intent inference approach first generates
a hypotheses set (H1-H3) and uses the robot’s recent positions to update
the probability of various hypothesized intents (H1-H3). Finally, we can
predict likely future positions of the robot using the inferred distribution
over possible intents.

performing. In this paper, we term this as the robot’s (cur-
rent/short term) intent. This approach assumes that the robot
has a high-level mission or intent. Furthermore, the robot is
assumed to choose an “efficient” plan for implementing the
mission. The efficient path can be either the shortest path or
the almost shortest path. In many scenarios, this assumption
is reasonable since operators want robots to implement more
missions with limited resources. Therefore, if a robot does
not choose an efficient strategy for completing a task, we
can deduce that either the robot is not rational or that our
current model of the robot’s goals are incorrect [7]–[13].

In this paper, we use the robot’s intent information for
predictive runtime monitoring. Our assumption is that, if a
robot has a high-level mission, we are able to (1) not only
infer the mission by observing its behavior (2) but also use
the information to predict future positions. Therefore, the
ability to find the intent is key in our work.

To that end, we use temporal logic formulas to represent
the intent. Temporal logics have been quite popular for
specifying missions in a precise manner and generating
efficient plans for carrying them out [14]–[20]. Temporal
logics have been demonstrated as suitable reprentations of
complex real-world missions such as surveillance and pack-
age delivery [18], [21]–[23]. We identify a subset of temporal
logic formulas corresponding to the safety and guarantee
formulas in the Manna-Pnueli hierarchy of temporal logic
formulas [24]. Such formulas can be satisfied or violated by
a finite prefix of an infinite sequence of actions and thus



quite suitable as representations of “near-term”/“immediate”
intents suitable for finite time horizon predictions of the
robot’s position. The Bayesian intent inference framework
then generates a finite set of possible intents using given
patterns of temporal logic formulas and places a prior
distribution on these formulas to represent the probability
that a given formula represents the robot’s intent. Next, we
use a model of “noisy rationality” to provide a probability
that a robot takes a given action in the workspace given
its true intent. This model compares the cost of the action
and the most efficient path from the resulting state to the
overall goal of the intent against other possible actions. We
use temporal logic planning techniques based on converting
formulas to automata and solving shortest path problems to
compute these costs.

Temporal logic specification inference from observation
data have been studied widely in the recent past [25]–[28].
The main difference from our work is that they assume the
entire trajectory is available at once, whereas we use the parts
of the trajectory. Furthermore, our approach uses intents as
a means to perform predictions of future positions.

We evaluate our framework on two datasets: a probabilistic
roadmap simulation dataset, wherein we use the popular
PRM planning technique to generate motion plans for some
tasks while using our intent inference technique to predict the
intents and future positions without knowledge of the overall
mission plan. A second data set consists of trajectories of
humans inside a room, called TḦOR [29]: here we are
provided noisy position measurements with unknown intents.
Thus, both datasets include a moving agent implementing
various subtasks on the way to a goal, which is unknown to
our monitor. The results show that our method can predict
future positions with high accuracy, and all computations can
be implemented in real-time.

The contributions of this paper are as follows:
1) We introduce a Bayesian intent inference framework

leveraging an intent information of a robot. The frame-
work computes the probability distribution of all possi-
ble intents written in LTL.

2) Using the outputs of the framework, we can effectively
carry out predictive monitoring that can be used in many
robotic applications.

3) All computations can be implemented with sufficient
efficiency to enable real-time monitoring.

To the best of our knowledge, this work is the first attempt
to use a logic-based Bayesian intent inference for predictive
monitoring.

II. PROBLEM FORMULATION

Central to our framework is a “map” of the robot’s
workspace that is discretized into finitely many cells. Each
cell is labeled with an atomic proposition that characterizes
the attributes of the cell. We use the mathematical model of
a weighted finite transition system to capture the map (or the
workspace) of the robot.

Definition 1 (Weighted Finite Transition System): A
weighted finite transition system T is a tuple (C,R,Π,L,ω)

wherein C is a finite set of cells, R⊆C×C is the transition
relation that represents all allowable moves from one cell
to the next by the robot, Π is a set of boolean atomic
propositions, L : C→ 2Π is a labeling function that associates
each cell c ∈C with a set of atomic propositions L(c), and
ω : R→R≥0 maps each edge in R to a non-negative weight.

Therefore, the position of a robot at time t can be defined
as a cell xt ∈C. Atomic propositions label attributes/features
such as airport, fire, mountain, and so on (see Fig. 1). A path
in T is an infinite sequence of cells p = c0c1c2 · · · such that
ci ∈C and (ci,ci+1) ∈ R for each i ∈ N.

a) Linear Temporal Logic: In this paper, we assume
that a robot has a high-level mission to implement before
going to a goal location. For example, “H1: Visit π1,π2, and
π3 in some order”, or “H2: Visit π3 while avoiding π5”. To
formally express such requirements, we use linear temporal
logic (LTL) whose grammar is defined as follows:

ϕ ::= true | false |π ∈Π |¬ϕ |ϕ ∧ϕ |#ϕ |ϕ U φ .

In addition, two temporal operators, eventually (♦ϕ :
trueU ϕ) and globally (�ϕ : ¬♦¬ϕ) can be derived. The
formula �ϕ is satisfied if ϕ holds for all time and ♦ϕ is
satisfied if eventually at some point in time ϕ is satisfied.
We refer the reader to standard texts for a detailed description
of temporal logic and its applications [30], [31]. Using LTL,
we can express the mission H1 : ♦π1 ∧ ♦π2 ∧ ♦π3 and
H2 : ♦π3∧�¬π5. Using LTL is beneficial because it is ca-
pable of describing complex missions clearly although some
fundamental properties like safety (�¬ϕ) and reachability
(♦ϕ) are mostly used for robot missions in many scenarios,
and because it enables us to use temporal logic motion
planning [14]–[20].

b) Assumptions: We assume full knowledge of the
transition system T is available at any time. Also, if the
map is updated in the case of dynamic scenarios, the new
information is assumed to be available immediately. On the
other hand, the robot’s mission is assumed to be unknown
but expressible as a temporal logic formula involving atomic
propositions in the map.

In this paper, we investigate two problems — intent
inference and predictive monitoring. Fig. 2 shows how these
problems relate to each other in our proposed framework.
Intent Inference: Given a transition system T
and the recent history of robot cells at time t,
xt ,xt−1, · · · ,xt−h, we wish to infer a distribution of likely
intents{(ϕ1, p1), . . . ,(ϕn, pn)}, wherein ϕi is a temporal
logic formula involving atomic propositions Π, and pi ≥ 0
is its associated probability with ∑

n
i=1 pi = 1.

Predictive Monitoring: Given a distribution over intents, we
wish to compute a distribution of future positions xt+k at time
t+k. At time t+1, our approach receives new robot position
xt+1, requiring updates to the intents, and the predicted future
cell. This update needs to be computed in time that is much
smaller than the overall sampling time.
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Fig. 2. Diagram of the Bayesian intent inference framework

III. BAYESIAN INTENT INFERENCE

We first introduce our Bayesian approach to solve the
intent inference problem. The idea of our approach is to
generate possible intents as our hypotheses and evaluate their
probabilities using Bayesian inference (see Fig. 2).

A. Hypothesis Generation

Hypothesis generation is achieved using temporal logic
specification patterns that have been explored in previous
works (Cf. [16], [18]). Such patterns specify temporal logic
formulae with “holes” that can be filled in with atomic
propositions. Each such pattern defines a set of formulas
obtained by substituting all possible atomic propositions
of interest for each hole. To avoid potentially vacuous or
inconsistent intents, we may further require that the same
atomic proposition not be used in two distinct holes for a
given template.

Example 1: We list some commonly encountered patterns
of interest below. We substitute an atomic proposition in the
place of a hole denoted by “ ? ”, ensuring that the same
proposition does not appear in more than one hole.
• Avoid Region: �¬ ?
• Cover Region: ♦ ?
• First and Then Second Region: ♦

(
? ∧♦

(
?
))

• Reach While Avoid: ♦ ? ∧�¬ ?
As a result, each pattern can be expanded out into a set

of LTL formulae that represent possible intents of the agent.

B. Temporal Logic and Büchi Automata

We recall the standard connection between temporal log-
ics and automata on infinite strings, specifically Büchi au-
tomata [32], [33]. Let ϕ be a temporal logic formula over
atomic propositions in Π. Recall such a formula can be
encoded as a nondeterministic Büchi automaton.

Definition 2 (Büchi Automaton): A Büchi automaton A
is a tuple (Q,Π,E,q0,F) wherein Q is a finite set of states;
Π is a finite set of atomic propositions; E ⊆ Q×Π×Q is a
set of transitions, wherein each transition (qi,π,q j) indicates
the transition from state qi to q j upon observing atomic

proposition π; q0 is an initial state and F is the set of
accepting state.

Given an infinite sequence of atomic propositions
π0,π1,π2, . . ., a run of the automaton is an infinite sequence
of states q0,q1,q2, . . ., such that q0 is the initial state and
(qi,πi,qi+1) ∈ E for all i ≥ 0. Finally, a run is accepting
iff it visits an accepting state q ∈ F infinitely often. It is
well-known that every LTL formula can be translated into a
Büchi automaton [30], [31]. The problem of constructing a
Büchi automaton from a LTL specification has been widely
studied [34] with numerous tools such as SPOT [35].

a) Safety/Guarantee Formulas and Automata: In this
paper, we focus on a very specific class of safety and guar-
antee formulas, originally introduced by Manna & Pnueli
as part of a larger classification of all LTL formulas [24].
Briefly, safety formulas can be written using the � operator
with negations appearing only in front of atomic proposi-
tions, whereas guarantee formulas are written using the ♦
operator with negations appearing only in front of atomic
propositions.

Example 2: Going back to the Example 1, we note that
the “avoid regions” pattern is a safety formula, whereas the
“cover regions” and “temporal sequencing” patterns are guar-
antee formulas. Note that the coverage with the safety pattern
is the conjunction of a guarantee sub-formula (involving ♦)
and a safety sub-formula (involving �).
Assumption: We will assume that any hypothesis being
considered can be written as(

M∧
i=1

�¬πs,i

)
∧

(
N∧

j=1

♦πg, j

)
, (1)

wherein A : {πs,1, . . . ,πs,M} is disjoint from B :
{πg,1, . . . ,πg,N}, and N > 1 (i.e, B 6= /0). Such a formula
represents the intent that the robot seeks to reach all regions
labeled by atomic propositions in the set B, in some order,
while avoiding all regions in A. More generally, however,
our framework can accommodate the conjunction of safety
formulas and guarantee formulas.

However, since our framework is probabilistic it associates
a measure of belief/probability with each hypothesis. Also,
since our framework is dynamic, these probabilities change
over time. Thus, it is possible for our framework to implicitly
infer a more complex high level objective that is not express-
ible in our restricted fragment of LTL. We will explore this
aspect of our work further in the future.

We now consider a special type of Büchi automaton that
we will call a safety-guarantee automaton.

Definition 3 (Safety-Guarantee Automaton): A Büchi au-
tomaton is said to be a safety-guarantee automaton if the set
of states Q is partitioned into three mutually disjoint parts:
Q : Qt ]F ]{r} wherein (a) the initial state q0 ∈Qt ∪F , (b)
Qt is a set of “transient” states such that no state in Qt is
accepting; (c) F is the set of accepting states, and (d) r is
a special reject state. Furthermore, the outgoing edges from
each state in F either take us to a state in F or to the reject
state r. Finally, all outgoing edges from r are self-loops back
to r. Fig. 3 illustrates safety-guarantee automata.
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Fig. 3. (left) Büchi automata for ♦π j and �¬πi; and (right) Overall
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Lemma 1: A formula that satisfies the pattern in Eq. (1)
is represented by a safety-guarantee Büchi automaton.

Proof: (Sketch) Note that such a formula is made up
of a conjunction of �(¬π j) and ♦πi subformulas whose
automata are shown in Fig. 3 (left). The overall conjunction
is represented by the product of these automata, wherein a
product state is accepting iff each of the individual compo-
nent states are accepting. The rest of the proof is completed
by identifying the states in each partition to establish the
overall safety-guarantee structure of the automaton.

b) Significance of Safety-Guarantee Structure: We will
briefly explain why the overall structure of the automaton is
important in our framework. Note that temporal logic formu-
las are quite powerful in expressing a variety of patterns that
may include formulas such as �♦π which states that a cell
satisfying the atomic proposition π must be reached infinitely
often, or ♦�π which states that the robot will eventually
enter a region where π holds and stay in that region forever.
Natually, it is impossible us to infer that such an intent holds
or otherwise by observing any finite sequence of cells, no
matter how long such a sequence may be. For instance, a
robot intending to visit a region infinitely often may take a
long time before its first visit to such a region since there are
infinitely many steps ahead in the future. In this regard, the
safety-guarantee structure allows the robot to signal its likely
intent using a finite sequence: a robot intending to satisfy an
intent can signal this in finitely many steps by reaching an
accepting state in F . Likewise, a violation can also be seen
in finitely many steps by reaching the reject state r.

c) Product Automaton: We define the Cartesian prod-
uct between a weighted transition system T defining the
workspace and a Büchi automaton A .

Definition 4 (Product Transition System): The product
automaton T ⊗A is defined as the tuple: (S,δ , F̂ , ω̂):

1) S : C×Q is the Cartesian product of the set of cells in
T and states in A ;

2) δ ⊆ S×S is a transition relation s.t. ((ci,qi),(c j,q j))∈ δ

iff (ci,c j) ∈ R and (qi,πk,q j) ∈ E for some πk ∈ L(ci);
3) F̂ : C×F is the set of accepting states, and
4) ω̂((ci,qi),(c j,q j)) is a weight function that is set to be

equal to ω(ci,c j) if ((ci,qi),(c j,q j)) ∈ δ

The product automaton models all the “joint” moves that
can be made by a copy of the automaton A in conjunction
with a transition system T , wherein the atomic propositions
labeling each cell in T governs the possible enabled edges
in the automaton A .

C. Cost of Formula Satisfaction

Let T be a weighted transition system describing the
workspace of the robot and ψ be a formula that follows
the pattern in Eq. (1), and described by a safety-guarantee
automaton Aψ . For a given state xt of T , we define the cost
of satisfaction: C (xt ,ϕ) as the shortest path cost for a path
in the transition system T whose atomic propositions satisfy
the formula ϕ . Formally, we define (and compute) C (xt ,ϕ)
using the following steps:

1) Compute the product automaton T ⊗Aψ .
2) Compute the shortest path cost from the product state

(xt ,q0) to the set of accepting states F̂ in the product
automaton, wherein the cost of a path is given by the
some of edge weights along the path.

Note that the shortest cost path from a single product
automaton state to a set of accepting states is defined as
the minimum among all possible shortest path from the
source to each element of the set. Since all edge weights are
positive, we can calculate the cost from each cell xt ∈C to
the set of accepting states in time using Dijkstra’s algorithm
(single destination shortest path). To handle a set of possible
destination, we simply add a designated new destination
node and connect all accepting states to it using a 0 cost
edge. This calculation runs in time O((|δ |+ |S|) log(|S|))
wherein |S|= |C|×|Q| is the number of states in the product
automaton and |δ |= |R|× |E| denotes the number of edges.

D. Bayesian Inference of Intent

Let H : {ϕ1, . . . ,ϕn} be the set of hypothesized intents of
the robot whose current cell is denoted by xt ∈C. We will
assume a prior probability distribution π over H wherein
π(ϕ j) denotes the prior probability over hypothesis formula
ϕ j. Our initial prior starts out by assigning each hypothesis
a uniform probability. The posterior from step t − 1 forms
the prior for step t with some modifications.

At each step, we obtain an updated robot position xt+1 ∈
C and use this fact to update the current distribution over
H . To do so, we require a model of robot decision making
that determines the conditional probability P(xt+1 | xt ,ϕ):
the probability given the intent ϕ and current cell xt , the
robot moves to cell xt+1. We will make an assumption of
Boltzmann noisy rationality [36].

a) Boltzmann Noisy Rationality Model: Let next(xt)
denote all the neighboring cells to xt . We assume that for
each cell c ∈ next(xt) the probability of moving to c is
proportional an exponential of the sum of the cost of moving
from xt to c and the cost of achieving the goal from c.

P(c|xt ,ϕ j) ∝ exp(−β (ω(xt ,c)+C (c,ϕ j))) ,

wherein β is a chosen positive number that represents the
rationality. For β = 0, the robot’s choice is just a uniform



Fig. 4. Example scenario of predictive monitoring for the robot that has an underlying intent �¬π0 ∧♦π2 ∧♦πg. The past five states (red circles) are
used for Bayesian intent inference and our monitor computes a distribution of future states (gray). The future trajectory is shown using small dots and the
ground truth of the future state is represented by red stars. As the robot navigates on the map, the monitor found π0 and pi1 are not a part of goals.

choice between all available moves regardless of the intent.
However as β → ∞, the agent simply chooses the optimal
edge along the shortest cost path. With the appropriate
normalizing constant, we note that

P(xt+1|xt ,ϕ j) =
exp(−β (ω(xt ,xt+1)+C (xt+1,ϕ j)))

∑c∈next(xt ) exp(−β (ω(xt ,c)+C (c,ϕ j)))
.

(2)
Using Bayes rule, we can now compute the (unnormalized)

posterior likelihood as follows:

P(ϕ j |xt ,xt+1) ∝ P(xt+1 | xt ,ϕ j) × π(ϕ j) . (3)

The posterior probability is calculated by normalizing this
over all hypothesized intents ϕ ∈H . We will recursively
update the prior at each step to yield the posterior at the
next step. However, it is often useful to capture a change in
the intent at each step by means of an “ε-transition”:

πt+1(ϕ j) = (1− ε)P(ϕ j | xt ,xt+1)+ ε
1
|H |

. (4)

The so-called ε transition simply weights down the posterior
by a factor 1−ε and adds a uniform probability distribution
with a constant weight ε . This method allows us to quickly
capture the new intent when an agent changes its intent
during the operation. In our experiments, we fix ε = 0.3.

E. Posterior Predictive Distribution

Given the current posterior P(ϕ j|xt ,xt+1) computed using
Eq. (3), we wish to forecast the future position of the robot.
We model the movement of the robot as a stochastic process:

1) Let initial position be xt+1 and the initial intent distri-
bution be given by the distribution πt+1 from Eq. (4).

2) At time t = t + k, update the current intent distribu-
tion: πt+k+1 = (1− ε)πt+k + ε Uniform(H ), wherein
Uniform(H ) represents a uniform distribution over the
elements of the finite set H .

3) Sample an intent ϕ j from πt+k+1.
4) Sample xt+k+1 from the distribution P(xt+k+1|xt+k,ϕ j)

according to Eq. (2).
Using the procedure above, we obtain samples of potential

future trajectories of the robot. We can use these trajectories

to predict the possible future positions at a future time t+T .
Notice, however, that our model implicitly assumes that the
robot’s intents change arbitrarily and are chosen afresh at
each step according to the posterior distribution.

a) Example Scenario: Fig. 4 shows an example sce-
nario of a robot in a workspace with four distinct regions
labeled with atomic propositions π0,π1,π2 and πg as shown
by the highlighted rectangles in the figure. The underlying
(ground truth) intent is to avoid the region π0, visit regions
π2 and πg. The path taken by the robot is shown using the
red circles whereas the predicted future distribution is shown
using various shades of gray, the darker shade representing a
higher probability. The ground truth future position is shown
using the red star.

At time t = 1, having observed just two data points, the
intent to avoid π0 is guessed by our monitor. However, at
time t = 7, the robot is seemingly unable to distinguish
between the competing goals of reaching/avoiding π1,πg and
π2. However, at this time, the monitor predicts a right turn
with a high probability though the robot’s direction of travel
would indicate that it continues moving in a straight line in
the positive y direction.

At time t = 12, we see that the robot’s direction of travel
makes the intent to reach π2 clear. Similarly, at time t =
19, we see that the goal of reaching π1 or that of πg are
considered likely with πg being seen as more likely to be
the robot’s intended target.

Thus, we see how the robot’s future positions are predicted
accurately by our monitor even though the set of possible
intents are restricted to simple safety-guarantee formulas.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our mon-
itoring approach on two datasets – a synthetic data set gen-
erated by a Probabilistic Roadmap (PRM) motion planning
algorithm that was used to plan paths satisfying randomly
generated ground truth “intents”, and the THÖR human
trajectory dataset [29]. Using these, we will answer the
following questions: (Q1) How does the prediction accuracy
change as a prediction horizon increases? and (Q2) How does
the computation time depend on the prediction time horizon?



Fig. 5. Example of the evaluation setup showing goal regions labeled
by atomic propositions and an underlying intent that seeks some subset
of the regions/avoids the rest. The revealed trajectory is shown using red
circles while the future trajectory is shown using dotted lines. Predicted
distribution of future states is shown in various shades of gray with darker
shades representing higher probabilities.

Each evaluation is performed over a map with K distin-
guished regions marked by atomic propositions π1, . . . ,πK .
The hypothesized intents consist of 2K formulas, each of the
form

∧
j∈A♦π j ∧

∧
i∈B�¬πi wherein A∩B = /0 and A∪

B = {1, . . . ,K}. Each evaluation consists of a path followed
by the robot wherein the monitor predicts the probability
distribution of the positions 5,10 and 15 steps ahead. A pre-
diction is deemed correct if the actual ground-truth position
is predicted by our monitor as having a probability ≥ 0.01.

The trajectories are generated using two approaches:
PRM trajectories: We use a map with N ×N grid cells
and place K random regions on the map. Next, we mark a
randomly chosen subset of these regions as obstacles and
select the remaining regions as targets. We use the PRM
motion planner off the shelf to generate a plan that may not
necessarily be optimal, but is often close to being optimal.
Our experiments vary N ∈ {20,50,100} and K ∈ {3,5}.
THÖR Human Motion Dataset: This publicly available
dataset includes multiple human trajectory data recorded in
a room of 8.4× 18.8 meters [29]. The workspace consists
of five goal locations around the room and one obstacle
in the middle. Participants navigate between goals while
avoiding the obstacle. To use this dataset for our monitor,
we converted the workspace to a 50× 50 grid map, and
discretized human trajectory data. Among all trajectories, we
selected 277 segments at random for our evaluation.

A. Evaluation of Accuracy and Computation Time

Fig. 6 shows that the prediction accuracy for the various
datasets under varying prediction horizons. We note that the
performance degrades as the prediction horizon grows, as
expected. Nevertheless, our approach continues to provide
useful information nearly 70% of the time on prediction
horizons that are 10 steps ahead. Furthermore, this accuracy
can be increased further by considering correlations of intents
over time which is currently not performed in our approach.
We also note that the accuracy degrades when more atomic
propositions are considered and thus more hypothesized
intents are available. Finally, we notice that the accuracy

Fig. 6. Prediction accuracy tested on various settings.

TABLE I
COMPUTATION TIME FOR OUR APPROACH, AS RECORDED ON A

MACBOOK PRO WITH 2.6 GHZ INTEL CORE I7 AND 16 GB RAM.

Map size 20×20 50×50 100×100
Product Automaton Construction
(32 states in a Büchi automaton) 0.07 0.23 0.75

Bayesian Intent Inference
with 32 hypotheses 0.16 0.56 2.13

300 Monte-Carlo Simulations
(5 / 10 / 15 steps) 0.28 / 0.55 / 0.81

for the real-life human trajectory dataset is comparable with
that of the synthesized PRM dataset. This partly validates
the rationality hypothesis that underlies our work.

Next, we consider an evaluation of the computation time.
The computational complexity of our approach dependes on
the size of product automata and the number of hypotheses.
Table I reports the computation time for constructing product
automata, checking 32 intents, and Monte-Carlo simulations
for various map sizes. We note that the computation times
remain small even for a 100×100 grid and 32 intents each
with 32 Büchi automaton states.

V. CONCLUSION

Thus, we have demonstrated a framework for inferring
intents and predicting likely future positions of robots. Our
framework can be extended in many ways including richer
set of intents, alternative assumptions on how intents change
over time, incorporating richer agent dynamics, maps with
time-varying regions of interest, alternatives to the noisy
rationality model considered, and finally, intents governing
multiple agents. We propose to study these problems using
the rich framework of logic, automata and games combined
with fundamental insights from Bayesian inference and ma-
chine learning.
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