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Abstract. We propose a predictive runtime monitoring approach for
linear systems with stochastic disturbances. The goal of the monitor is
to decide if there exists a possible sequence of control inputs over a given
time horizon to ensure that a safety property is maintained with a suffi-
ciently high probability. We derive an efficient algorithm for performing
the predictive monitoring in real time, specifically for linear time in-
variant (LTI) systems driven by stochastic disturbances. The algorithm
implicitly defines a control envelope set such that if the current control
input to the system lies in this set, there exists a future strategy over
a time horizon consisting of the next N steps to guarantee the safety
property of interest. As a result, the proposed monitor is oblivious of the
actual controller, and therefore, applicable even in the presence of com-
plex control systems including highly adaptive controllers. Furthermore,
we apply our proposed approach to monitor whether a UAV will respect
a “geofence” defined by a geographical region over which the vehicle may
operate. To achieve this, we construct a data-driven linear model of the
UAVs dynamics, while carefully modeling the uncertainties due to wind,
GPS errors and modeling errors as time-varying disturbances. Using re-
alistic data obtained from flight tests, we demonstrate the advantages
and drawbacks of the predictive monitoring approach.

1 Introduction

We present efficient algorithms for the problem of monitoring viability in linear
stochastic systems, and apply our approach to monitoring geofencing for UAVs.
As UAVs become increasingly prevalent, the issue of such UAVs straying into
critical infrastructure such as airports [3], residential buildings, military installa-
tions and other areas has gained critical importance. Geofences are virtual areas
defined by a air traffic management authority inside which a UAV is permitted
to operate [24]. However, breaches of these geofences, intentional or otherwise,
need to be monitored. Furthermore, monitors need to provide advance warn-
ing to an operator that a breach is impending: such warnings can provide the
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Fig. 1. Schematic diagram of the closed loop system showing the plant and the con-
troller.

traffic manager valuable time to undertake possible defensive measures, or even
help with post-incident investigations. Formally, a geofence is defined by a set
F ⊆ R3, specifying legal (x, y, z) positions of the UAV.

Definition 1 (Geofence Monitoring Problem). Given the current state of
the aircraft (assume current time is t = 0), will its position (x(t), y(t), z(t))
remain inside a geofence F over a time interval [0, T ] in the future.

As such, geofences are safety properties and monitoring them over a finite
time horizon requires over-approximating the set of possible reachable states
RT over the time interval [0, T ] of interest, enabling us to check the condition
RT ⊆ F . Naturally, for runtime monitoring, the reachable state estimate must
be computed and checked against the specifications during the deployment. How-
ever, reachability analysis is a difficult computation that is complicated by mul-
tiple factors. As shown in Figure 1, the UAV system is a closed-loop consisting
of the physical dynamics of the aircraft and the on-board navigation/guidance
controller.
1. The physical dynamics are uncertain and influenced by unknown, stochastic

disturbances such as the wind.
2. The navigation and guidance component are often nonlinear, involving pro-

prietary autopilot systems and influenced by waypoints or other mission
specifications provided by the operator.

Nonlinear reachability analysis for hybrid systems is an active area of research [7,
9, 2, 12]. However, a rapid real-time stochastic reachability analysis of the closed
loop in Fig. 1 to check geofence violations is beyond the capability of even the
most sophisticated tools, at the time of writing. In this paper, we sidestep these
issues to derive an efficient solution suitable for online monitoring:
1. We use data-driven linear forecast models for the UAVs that includes the

effect of wind uncertainty and unmodeled dynamics.
2. Instead of monitoring whether the closed loop will satisfy the safety property,

we ask a different question of viability rather than safety.
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Definition 2 (θ-viable). A state x(0) of the plant is θ-viable at a future time
T , iff there exists a control strategy over [0, T ] such that the probability of safety
at time T is at least θ — i.e., P(x(T ) ∈ F ) ≥ θ.

In practice, θ is set to a number close to 1, indicating the desired level of
confidence in the system state. Viability monitoring differs from the standard
safety monitor in the following manner: rather than ask whether the particular
control law can act to prevent a future failure, we ask the question whether there
exists some control strategies that can prevent failure. In particular, this strategy
may differ from the one used by the actual controller. It is possible that a system
state is viable but the specific control law employed can lead to failure. On the
other hand, if a system is deemed not viable for a future time, it is essentially
at the mercy of the environment: no controller can guarantee safety for such a
system with probability exceeding θ. The advantages of the viability monitoring
approach used in this paper include:
(a) It is purely a property of the plant model and does not involve the controller.

This allows us to handle systems that are controlled by complex control
strategies that may be proprietary, or in general, hard to reason about in
real-time. This may include neural networks and learning-based controllers
that are now quite popular in autonomous systems.

(b) Finally, we show a sufficient condition that yields a sound monitor for viabil-
ity for linear stochastic systems. This monitor can be implemented efficiently
with an efficient online runtime monitoring strategy.
However, viability monitoring suffers from key disadvantages from the point

of view of runtime monitoring for safety:
(a) A viability monitor can miss impending safety violation (false negatives).

The closed loop system may, in fact, violate the safety property despite
there being a strategy to avoid that violation.

(b) The approach can potentially yield false alarms, wherein a failure of via-
bility does not necessarily lead to a property failure. It is entirely possible
that the environment does not exhibit the worst case behavior leading to a
failure of viability, but at the same time allowing the system to remain safe.
Nevertheless, such situations are important to note and fix, lest they lead to
an actual violation in a different instance.
The gap between safety monitoring and the notion of viability monitoring

presented in this paper can be narrowed by constraining the definition of viabil-
ity, in order to account for properties of the controller. The key here is to restrict
the control strategies used in Def. 2 to a smaller set of strategies that include
those employed by the controller. For instance, the range of control inputs used
by the actual controller implementation can be used to restrict the strategies
considered in Def. 2. More general abstractions of the controller, if available, can
also be employed in this manner. In doing so, the drawbacks mentioned above
can be partly addressed.

The rest of the paper is organized as follows: Section 2 describes the data-
driven modeling approach, Section 3 presents the basic algorithm for monitoring
viability efficiently, Section 4 presents how this algorithm is adapted and makes
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more efficient specifically for geofencing. Finally, an evaluation based on actual
UAV test flight data under windy conditions is presented in Section 5. The eval-
uation shows that the approach is generally successful in monitoring violations
of safety properties sufficiently ahead of time. Very few violations (< 1%) are
missed by our monitors, while at the same time the false positive rate is very
small (< 0.3%).

1.1 Related Work

The use of real-time monitors to predict and act against imminent property vi-
olations forms the basis for runtime assurance using L1-Simplex architectures
that switch between a lower performance but formally validated control when
an impending failure is predicted [23]. However, the key issue lies in the process
of predicting impending failures with high confidence. Often, predicting failures
involves computing control invariant sets, or solving reachability problems in
real time [14, 8]. Previous work by some of the authors use a game theoretic
approach to monitor impending property violations for linear systems [10]. This
paper directly extends our previous work to probabilistic models. Additionally,
we showcase a realistic application to monitoring geofence violations. Recently,
the idea of shielding has been proposed for runtime assurance of autonomous
systems with human operators and learning-enabled systems. Formally, a shield
is a component that interfaces between a human operator or a complex controller
and the plant that can modify the control inputs in real time to avoid an erro-
neous state, or recover from one as quickly as possible [15]. The idea has been
applied to safe reinforcement learning wherein the shield restricts the actions
of the learner during the training phase and prevents a specification violation
during deployment phase [1]. Although the present work focuses on efficient
monitoring, our approach described here lends itself easily to the synthesis of a
shield component. However, a key difference is that our work focuses on predict-
ing the satisfaction of safety properties over a future state using a data-driven
model. Such a prediction is complementary to the process of shield synthesis
that focuses on corrective actions to avoid failures, or recover from them.

Recently, data-driven predictions of impending property violations have re-
ceived much attention. Phan et al. demonstrate the use of neural network clas-
sifiers combined with offline statistical model checkers to predict if the current
state is likely to violate a property during a future time horizon [20]. Neural
networks are black boxes whose predictions must be trusted. Nevertheless, the
recent surge of interest in verifying neural networks bodes well for the use of
these models in monitoring applications.

Lygeros and Prandini (along with coworkers) have investigated stochastic
reachability analysis approaches for detecting and avoiding collisions between
aircrafts [22, 16]. Their approach bears many similarities with ours: the use of
stochastic models to predict future positions with uncertainties and the use
of reachability analysis to estimate probability of collision. However, there are
many key differences: first, we use discrete time data-driven models inferred in
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real time as we obtain recent historical data. We also monitor viability in order
to avoid reasoning about the on-board controllers.

Stevens et al. investigate the problem of monitoring geofences: on one hand
their work can monitor nonconvex geofence regions [25]. However, their monitor-
ing is not predictive: to enable prediction they simply narrow the safety region
so that a violation of the conservative region indicates a potential impending
violation of the original specification. In this work, we tackle the problem of pre-
dicting future loss in viability, more systematically, while accounting for wind
disturbances.

The work of Moosbrugger et al. presents another key application of data-
driven models for the runtime monitoring of UAVs [19]. Their approach uses a
combination of a Bayes network to model how various observable events may
result in hardware/software failures or security threats during the operation of a
UAV. Our approach also uses data-driven models, but to predict future positions
and velocities. Also, we monitor viability properties involving future positions of
the aircraft. We hope to investigate how ideas from Moosbrugger et al. (ibid) can
be incorporated into our framework to fuse observable events on-board UAVs
to better predict future positions. Besides predicting collisions, or monitoring
onboard health, data-driven models can be applicable to other aspects of flight
such as remaining fuel/power. Chati and Balakrishnan present a data-driven
Gaussian process model of aircraft fuel consumption, an important prediction
target during flight [6].

Vinod et al. consider the problem of finding control inputs to guarantee
future safety property of a linear stochastic system using ideas such as dy-
namic programming, chance constrained optimization and Fourier transform
approaches [26, 27]. Our work in contrast attempts to get rid of the stochastic
disturbances by finding a robust set to contain the disturbances. This has the
advantage of computational speed suitable for real-time monitoring. However,
we can only provide a sound rather than a precise solution for the monitoring
problem. Quantifying the gap between the two approaches will be performed in
our future work.

2 Data-Driven Model

In this section, we review our approach to formulating data-driven models that
augment an existing physical model of aircraft dynamics. We first start with the
overall structure of the model and explain how various parts of the model are
infered as well as the process of modeling the uncertainty.

We start with a simple physical model of an aircraft with current position
(x, y, z), velocities (vx, vy, vz) along a static reference frame fixed to the earth
and accelerations (ux, uy, uz) that are treated as control inputs. Let δ be a fixed
step size. Our experiments use δ = 0.4 seconds based on the data refresh rate
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from our UAV platforms.

x(t+ δ) = x(t) + δvx(t) + 1
2δ

2ux + ex(t+ δ)
y(t+ δ) = y(t) + δvy(t) + 1

2δ
2uy + ey(t+ δ)

z(t+ δ) = z(t) + δvz(t) + 1
2δ

2uz + ez(t+ δ)

vx(t+ δ) = vx(t) + δux(t) + evx(t+ δ)
vy(t+ δ) = vy(t) + δuy(t) + evy(t+ δ)
vz(t+ δ) = vz(t) + δuz(t) + evz(t+ δ)


(1)

We have introduced terms ex, ey, ez, evx, evy, evz model discrepancies between
the observed data at time t+ δ and that predicted by a simple Newtonian parti-
cle model of the UAV. We will call Eq. (1) as our core model that incorporates
the physical knowledge as well as unexplained discrepancies that may arise due
to model mismatch as well as the disturbances. The key is to model these dis-
crepancies as a function of the recent historical data. We wish to model each
error as a function of the past:

ex(t+ δ) = a0ex(t) + · · ·+ ap−1ex(t− (p− 1)δ) + w(t+ δ) . (2)

Here a0, . . . , ap−1 are called the autoregressive coefficients, p is the history length
and w is a random variable drawn from a known probability distribution, and
independent of the current state variables. Such a model is called an autoregres-
sive (AR) model. Likewise, we formulate AR models for ey, ez, evx, . . . , evz. It
is important to fix the form of this model and the length of the historical data
needed.

2.1 Autoregressive Models

In this paper, we will model discrepancies e using a simple yet effective model-
ing paradigm called auto-regressive models with exogenous inputs (ARX) mod-
els[18, 5]. ARX models are a simple approach to formulating linear models in
time-series forecasting. They are widely used in numerous applications especially
where simplicity and careful modeling of uncertainties are important. Further-
more, we prefer to explore the capabilities of such a simple approach to motivate
whether more complex nonlinear models can be useful. Consider again the form
of the discrepancy model in Eq. (2). To infer the coefficients a0, . . . , ap−1, we
first use our data to compute ex(t), ey(t), . . . , evz(t) for each time t = δ, . . . , Nδ
by substituting the known data in the core model (1).

Inferring Models (Regression): For discrepancy variables ex, ey, ez, evx,
evy, and evz, we set up models for fixed history lengths p as in Eq. (2). The
disturbance term w(t + δ) is removed from the model and estimated later. For
each time t = 0, δ, . . . , (N − 1)δ, we obtain a single equation involving the un-
knowns c : (a0, . . . , ap−1). As a result of plugging in the data, we obtain a system
of equations of the form: Ac ≈ b, wherein A, b are formulated from the data.
However, there will be more equations than there are unknowns. Thus, our goal
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is not to find a “perfect” solution to the equations, since one will not exist in all
but the rarest of cases. We use linear regression to minimize the residual error
min(||Ac−b||22). Often, we wish to minimize the residual error subject to sparsity
constraints on the coefficient. One approach to do is called ridge regression [13],
wherein we minimize min(||Ac − b||22 + α||c||22), wherein α is a constant. The
objective function represents a tradeoff between achieving low residual errors
versus keeping the sizes of the coefficients small. This is adjusted using the pa-
rameter α. The regression problem is solved using well-studied approaches from
linear algebra such as Cholesky decomposition or conjugate gradient approaches.
The resulting solution yields the coefficients c of the ARX model.

Once we finish solving the regression, we estimate the distribution of the
residuals w(t), by modeling the distribution of the residual error vector Ac −
b. This can be achieved in one of two ways: (a) carrying the residual vector
Ac− b and randomly sampling a value from it when needed to obtain a sample;
(b) modeling the error as a distribution such as a Gaussian distribution by
computing its mean and standard deviation. Statistical tests such as the chi-
squared tests can help us estimate how close the residual distribution is to being
a Gaussian. We adopt the latter approach since for all our datasets seen in this
paper, we obtain excellent fits to the Gaussian distribution. The distribution
mean is obtained as the empirical mean of the residuals Ac−b and the standard
deviation is obtained as the empirical standard deviation. The final form of the
ARX model is therefore given by Eq. (2) with w modeled as a sample from a
Gaussian distribution with a given mean and standard deviation.

Example 1. The equation below partially illustrates a model for x, y, z with ex, ey
and ez. Note that δ = 0.4.

x(t+ δ) = x(t) + δvx(t) + 1
2δ

2ux + ex(t)
y(t+ δ) = y(t) + δvy(t) + 1

2δ
2uy + ey(t)

z(t+ δ) = z(t) + δvz(t) + 1
2δ

2uz + ez(t)
ex(t+ δ) = 0.57ex(t) + 0.39ex(t− δ) + w1 (σ1 : 0.13)
ey(t+ δ) = 0.49ey(t) + 0.27ey(t− δ) + w2 (σ2 : 0.14)
ez(t+ δ) = 1.35ez(t)− 0.39ez(t− δ) + w3 (σ3 : 0.053)

The terms w1, w2, w3 are Gaussian random variables with 0 mean and vari-
ances σ1, σ2 and σ3, respectively, as shown.

Model Updating: We briefly comment on model updating. UAV environments
involve changes to aircraft dynamics due to wear and tear, payload variations
and fuel loss as well as changes in wind conditions. As a result, it is important
to update the model using the “latest” available data. In our experiments, the
process of constructing the model from nearly 2000 data points takes less than
0.1 seconds. As a result, it is possible to keep updating the model in real time.
Another alternative is to update the distributions of w(t) over time using the
residuals computed based on real data. For the rest of the paper, we consider
the model to remain fixed for all times. Schemes for updating the model in real
time are beyond the scope of the current work. We hope to investigate them as
part of future work.
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3 Viability Monitoring

We will now present viability monitoring for linear stochastic systems.

Definition 3 (Plant Model). A plant model P is given by a tuple 〈δ, A,B,C,U ,D〉
with a time step δ > 0, state vector x(t) ∈ Rn, a control input vector u(t) ∈ Rm
and a disturbance input vector w(t) ∈ Rk. At each step, the state of the plant
model is updated according to the matrices A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn×k.

x(t+ δ) = Ax(t) +Bu(t) + Cw(t) ,

wherein u(t) ∈ U and w(t) ∼ D, i.e., w(t) is distributed according to D.

We will make the following assumptions on the structure of the plant model.
(1) The set U is a box wherein each component ui belongs to an interval [aui , bui ].

Later, this assumption will enable us to simplify the overall monitoring al-
gorithm.

(2) The distribution D is normal wherein each component wi(t) for 1 ≤ i ≤ k is
distributed according to a gaussian random variable with mean 0 and stan-
dard deviation σi. Furthermore, random variable wi(t), wj(t) are pairwise
independent for i 6= j. Also, random variables w(t),w(t′) are independent
for t′ 6= t.
We note that the data-driven model discussed in eqs. (1) and (2) in Section 2

fit the structure of our plant model. The state x consists of the following:

x(t), y(t), z(t)︸ ︷︷ ︸
Position

, vx(t), vy(t), vz(t)︸ ︷︷ ︸
Velocities

, ex(t), . . . , ex(t− (p− 1)δ)︸ ︷︷ ︸
ARX model state

, · · · , evz (t), . . . , evz (t− (p− 1)δ)︸ ︷︷ ︸
ARX model state

.

Let F be a set of safe states x defined by constraints of the form Px ≤ q for
a l × n matrix P and l × 1 vector q. For a fixed parameter θ ∈ (0, 1), we define
θ viability formally in terms of the plant model.

Definition 4 (θ-viable). A state x is said to be θ-viable with respect to a plant
model P and time T = Nδ if an only if

(∃u(0), . . . ,u((N − 1)δ) ∈ UN ) Pw(0)∼D,...,w((N−1)δ)∼D (x(Nδ) ∈ F ) ≥ θ . (3)

3.1 Sufficient Condition for θ-Viability

We will now present the derivation for a sufficient condition for θ viability given
an initial state x(0). For simplicity, we will assume that there is no uncer-
tainty with respect to the initial state itself. However, such uncertainties can
be easily modeled in our framework. Let u(t) denote the control inputs at time

t ∈ {0, . . . , (N −1)δ}, such that u(t) ∈ U . Let vj :

 u(0)
...

u((j − 1)δ)

 for j ≥ 1, be

the vector that collects the control inputs over time points t ∈ {0, δ, . . . , (j−1)δ}.
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Let Vj be the set of admissible values of vj . Finally, let zj :

 w(0)
...

w((j − 1)δ)


collect the disturbance inputs over the time points {0, δ, . . . , (j − 1)δ}. We can
calculate x(Nδ) as follows:

x(Nδ) = ANx(0) +BNvN + CNzN . (4)

The matrix AN is defined by the recurrence: Aj = AAj−1, j ≥ 2, with base
case A1 = A. BN is defined by the recurrence Bj =

[
ABj−1 B

]
for j ≥

2, with base caseB1 = B. Likewise, Cj =
[
ACj−1 C

]
for j ≥ 2, with base case C1 =

C.

Lemma 1. Given AN , BN , CN and the vectors vj , zj, as described above, for
any initial state x0 at time t = 0, x(Nδ) = ANx0 +BNvN + CNzN .

Proof. Proof is by induction on N . For N = 1, the formula describes a single
step of the plant model. Assume that it holds for N = j. We have that

x((j + 1)δ) = Ax(jδ) +Bu(jδ) + Cw(jδ)
= A(Ajx0 +Bjvj + Cjzj) +Bu(jδ) + Cw(jδ)
= AAjx0 + (ABjvj +Bu(jδ)) + (ACjzj + Cw(jδ))

= Aj+1x0 +
[
ABj B

]( vj
u(jδ)

)
+
[
ACj C

]( wj

w(jδ)

)
= Aj+1x0 +Bj+1vj+1 + Cj+1zj+1

Robust Disturbance Sets: Eq. (3) involves checking an existentially quantified
formula involving an integration over zN . Such assertions are called chance con-
straints, and can be quite expensive to verify[26]. We perform a reduction of
the chance constraints through a simple trick of replacing the integration with
a forall quantifier by using a robust disturbance set.

Definition 5 (θ-robust set). Let z ∼ D. A set Zθ is said to be θ-robust for
distribution D if P(z ∈ Zθ) ≥ θ.

In general, there are many possible choices of θ-robust sets, given the distri-
bution of each disturbance input vector w(t). For instance, if w(t) is a normally
distributed random variable N (0, σ2In×n) with mean 0 and co-variance matrix
Σ : σ2In×n, then the following hyper-spherical region is θ-robust:

Zθ,Σ = {w | wTΣ−1w ≤ χ2
n(1− θ)} , (5)

wherein χ2
n(1 − θ) represents the upper (1 − θ) quantile of the standard chi-

squared distribution with n-degrees of freedom, whose value can be looked up
from a table. Therefore, to derive a sufficient condition for checking θ-viability,
we first select a θ-robust set Zθ such that P(zN ∈ Zθ) ≥ θ. Next, we check the
assertion:

(∃vN ∈ VN ) (∀zN ∈ Zθ) x(Nδ) ∈ F (6)
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Lemma 2. The condition in Eq. (6) implies the viability definition in Eq. (3).

Proof. Let us assume that x(0) satisfies Eq. (6).

P(x(Nδ) ∈ F ) ≥ P(x(Nδ) ∈ F |zN ∈ Zθ)P(zN ∈ Zθ)
≥ P(zN ∈ Zθ) ← because x(Nδ) ∈ F, ∀ zN ∈ Zθ
≥ θ ← by defn. of Zθ .

.

Therefore, once Zθ is chosen, the computation reduces to checking (6). How-
ever, this involves a single quantifier alternation and thus, computational expen-
sive. However, the structure of the plant model can be exploited as follows:

First, we note that the set of possible states x(Nδ) in Eq. (4) is the sum
of three individual components that can each be chosen independently of the
others: (a) constant vector ANx(0) (no real choice here), (b) a vector of the
form BNvN indicating the contribution from the control strategy, and (c) a
disturbance vector chosen from the set:

Ẑ : {CNzN | zN ∈ Zθ} (7)

Thus, the key observation is that the reachable set at timeNδ is a Minkowski sum
of three sets, as described above. We will now define the operation of Minkowski
difference of two sets and directly use it to remove the quantifier alternation in
Eq. (6).

Definition 6 (Minkowski Difference). Let A,B ⊆ Rn be two subsets. The
Minkowski difference A	B is defined as the set: A	B : {a | (∀ b ∈ B) a+ b ∈ A}.

Therefore, returning to Eq. (6), we use the definition of Ẑ from Eq. (7), and the
notion of Minkowski difference to obtain an equivalent condition:

(∃ vN ∈ VN )ANx0 +BNvN ∈ (F 	 Ẑ) (8)

Lemma 3. The condition in Eq. (8) is equivalent to that in Eq. (6).

Proof. Let us assume that Eq. (8) holds for some initial state x0. Let vN ∈ VN
be the value of control inputs such that ANx0 +BNvN ∈ (F 	 Ẑ). Therefore, by
definition 6, (∀ ẑ ∈ Ẑ) ANx0 +BNvN + ẑ ∈ F . Recalling definition of Ẑ from,
Eq. (7), we obtain: (∀ z ∈ Zθ) ANx0 + BNvN + Cz ∈ F . This is the condition
from Eq. (6). The converse is proved by reversing the argument above.

Computing Minkowski Difference: It is essential to compute the Minkowski dif-
ference between a polyhedron F given by constraints Px ≤ q and a set Ẑ. We
use the following properties to compute this difference efficiently for polyhedral
sets.

Lemma 4. Consider a family of sets Aj for j = 1, . . . , l. (
⋂l
j=1Aj) 	 B =⋂l

j=1(Aj 	B).
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Proof. Let a ∈ (
⋂l
j=1Aj) 	 B. Therefore, for any b ∈ B, we have (a + b) ∈⋂l

j=1Aj . Thus, forall b ∈ B, we have (a + b) ∈ Aj for each j = 1, . . . , l. Thus,

a ∈ Aj 	 B, and hence, a ∈
⋂l
j=1(Aj 	 B). Conversely, let a ∈

⋂l
j=1(Aj 	 B).

Therefore, a ∈ Aj	B for each j = 1, . . . , l. Thus forall b ∈ B, we have a+b ∈ Aj .
Thus, forall b ∈ B, a+ b ∈

⋂
j Aj . Hence, a ∈ (

⋂l
j=1Aj)	B.

Lemma 5. Let Aj be a set denoted by a half-space {x | aj ·x ≥ bj} and B be a
compact set. Let ∆j be the result of the optimization problem min aj ·x s.t. x ∈
B. The set Aj 	B is the half-space Âj given by {x | aj · x ≥ bj −∆j}.

Proof. Choose any b ∈ B and x ∈ Âj . We have aj · (x+ b) ≥ aj · x+ aj · b ≥
(bj −∆j) +∆j ≥ bj . Therefore, x+ b ∈ Aj . We conclude Âj ⊆ (Aj 	B).

Furthermore, since B is a compact set, the minimum of the optimization
problem is achieved at a point b∗ ∈ B, i.e., aj · b∗ = ∆j . Let x be any point
in Aj 	 B. It follows that x+ b∗ ∈ Aj . I.e., aj(x+ b∗) ≥ bj . Therefore, ajx ≥
bj − aj · b∗ = bj −∆j . Therefore, x ∈ Âj . Thus we conclude Âj ⊇ (Aj 	B).

The lemma above provides us the ingredients for computing F 	 Ẑ for a
polyhedron F given by the intersection of l > 0 half-spaces, and a set Ẑ. This
involves solving optimization problems of the form (min a · z s.t. z ∈ Ẑ). If
Ẑ is a convex set, then computing ∆ can be performed efficiently using convex
optimization solvers[4].

Lemma 6. The Minkowski difference of a polyhedron F : Px ≤ q and a compact
set Ẑ is given by a polyhedron G : F 	 Ẑ of the form G : Px ≤ q−∆, wherein
∆j : min Pjx s.t. x ∈ Ẑ.

Proof. Proof combines the previous two lemmas: a polyhedron is an intersection
of half-spaces and we can compute Minkowski difference for each half-space.

3.2 Overall Monitoring Algorithm

We will now present the overall monitoring algorithm as a combination of (a)
upfront offline calculations, and (b) the real-time online monitor.

Offline Calculations: The offline calculations are performed given the plant
model P : 〈A,B,C,U ,D〉 (Def. 3), and the safety property F as a convex poly-
hedron Px ≤ q.

1. Compute matrices AN , BN and CN using Θ(N) matrix multiplication oper-
ations.

2. Compute a θ-robust set Zθ. Since the disturbance inputs are distributed
normally, we use Eq. (5) to choose one Zθ.

3. Compute the polyhedron for F 	 Ẑ, wherein Ẑ : {CNz | z ∈ Zθ} using
Lemma 6. Since Zθ is a convex quadratic, this is technically a quadratically
constrained quadratic program (QCQP).
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Online Calculations: The results of the offline calculations include matrices
(AN , BN ) and the set G : F	Ẑ. The online monitor receives the current state es-
timate x0 and the current controller input u0. Since vN = (u(0),u(δ), · · · ,u((N−
1)δ))T . We will set u(0) = u0 and let u(δ), . . . ,u((N−1)δ) be unknown decision
variables. The monitor checks the following constraint (Eq. (8)):

(∃ u(δ) ∈ U , · · · ,u((N − 1)δ) ∈ U) ANx0 +BN


u0

u(δ)
...

u((N − 1)δ)

 ∈ G (9)

Note that we can use a linear programming (LP) solver to check the condition
above. If it is feasible, we conclude that the system is viable. Otherwise, we flag
a potential violation of viability. Solving a LP can be performed efficiently in
polynomial time [11] and real-time solvers have been pioneered for applications
to model-predictive control [17]. However, as we will examine in the subsequent
section, it is possible to efficiently monitor a single half-space of the geofence,
while completely avoiding the LP solver.

4 Monitoring For Geofence Violations

In this section, we use the implementation of the monitoring approach from Sec-
tion 3 for checking geofences for UAVs. A geofence is defined by a (disjoint union
of) polyhedral regions over R3 that defines the possible (x, y, z) coordinates of an
aircraft over time. Let F denote the polyhedral region. We will use a data-driven
plant model P that is inferred from the telemetry data including positions and
velocities over time, as described in Section 2. The data is updated with a small
time period δ (0.4 seconds). We will choose a time horizon Nδ (typically in the
range 5−20 seconds). The monitoring approach uses the following improvements
on top of the base algorithm from Section 3:
1. Monitoring Single Half-spaces: We show that the approach in Section 3 can

be simplified considerably if we can monitor one half-space at a time. This is
natural for geofencing applications, wherein the safety property represents a
large geographical region.

2. Receding horizon monitoring: We deploy N monitors M1, . . . ,MN in par-
allel wherein Mj monitors the viability for time jδ into the future.

Monitoring Single Half-Spaces: We will now derive an efficient monitor when
the safety property F is defined by a single half-space: F : {x | c · x ≥ d}.
We will also assume that U , the bounds on the control inputs is a box with
each control input ui ∈ [ai, bi]. The restriction to a single half-space can be
justified for geofence regions that are large enough so that if they are violated,
the violation will occur by crossing a single hyperplane of the polyhedron rather
than crossing the intersection of multiple regions simultaneously. We will now
derive the monitoring conditions, following the same approach as in Section 3.
However, we will do so for the special case when F is a single half-space.
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Given x(Nδ) = ANx0 +BNvN + CNzN , we have c · x(Nδ) = (cTAN )x0 +
(cTBN )vN + (cTCN )zN . Therefore, c · x(Nδ) ≥ d if and only if there exists
vN ∈ VN such that the following condition holds with probability at least θ:

(cTAN )x0 + (cTBN )vN + (cTCN )zN ≥ d (10)

Note that the disturbance term (cTCN )zN is a scalar normal random variable
with 0 mean and whose standard deviation can be computed as a weighted sum
of the individual standard deviations of the component random variables. There-
fore, let [−M,M ] represent an interval such that P((cTCN )zN ∈ [−M,M ]) ≥ θ.
In other words, we choose a θ-robust set, that is an interval. Therefore, a suffi-
cient condition for Eq. (10) is as follows:

(∃ vN ∈ VN ) (cTBN )vN ≥ d+M − (cTAN )x0 (11)

vN collects all the control inputs u(0), . . . ,u((N − 1)δ). Thus, Eq. (11) is “ex-
panded” as

(∃u(δ) ∈ U , . . . ,u((N − 1)δ) ∈ U)

N−1∑
j=0

m∑
i=1

ĉi,jui(jδ) ≥ d̂ , (12)

wherein ĉi,j represents the component of cTBN corresponding to the control

input ui(jδ) (the ith component of the control input at time t = jδ) and d̂ =
d + M − (cTAN )x0. Note that the value of ui(0) is known, and for j ≥ 1,
ui(jδ) ∈ [ai, bi]. We define ûi,j as follows:

ûi,j =

{
bi if ĉi,j ≥ 0

ai if ĉi,j < 0

Lemma 7. The condition (12) is satisfiable iff

N−1∑
j=1

m∑
i=1

ĉi,j ûi,j ≥ d̂−
m∑
i=1

ĉi,0ui(0) . (13)

Proof. Note that ĉi,jui(jδ) ≤ ĉi,j ûi,j for every i, j.
Let us assume that (12) is satisfiable. We conclude the existence of ui(jδ) ∈

[ai, bi] such that
N−1∑
j=0

m∑
i=1

ĉi,jui(jδ) ≥ d̂ .

Therefore,
N−1∑
j=1

m∑
i=1

ĉi,jui(jδ) ≤
N−1∑
j=1

m∑
i=1

ĉi,j ûi,j

Therefore, we conclude that

N−1∑
j=0

m∑
i=1

ĉi,j ûi,j ≥ d̂−
m∑
i=1

ĉi,0ui(0) .
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Conversely, let us assume

N−1∑
j=1

m∑
i=1

ĉi,j ûi,j ≥ d̂−
m∑
i=1

ĉi,0ui(0) .

We set ui(jδ) := ûi,j . This is a legal choice since ûi,j ∈ [ai, bi]. Therefore, we
have for our choice of ui(jδ):

N−1∑
j=1

m∑
i=1

ĉi,jui(jδ) ≥ d̂−
m∑
i=1

ĉi,0ui(0) .

In other words, (12) is satisfiable.

In other words, monitoring a single half-space can avoid using LP solvers,
and instead, rely on efficient matrix vector multiplication operations.

Finding largest θ value for viability: Rather than fixing a value of θ and checking
θ-viability, a simple modification to Eq. (11) allows us to find the largest value
of θ for which viability can be guaranteed. To do so, we find a value of M which
corresponds to the minimum possible disturbance that can continue to maintain
viability. This is convenient since it allows us to compute a risk measure rather
than a yes/no answer.

5 Evaluation

We now present a preliminary evaluation of the ideas presented, thus far, based
on viability monitoring applied to telemetry data collected from a test flight of
the Talon UAV running a Pixhawk autopilot [28, 21]. The test flight was carried
out over the Pawnee national grassland in the USA during summer 2017 and
the data recorded included GPS positions, velocities and accelerations in x, y, z
directions. Note that accelerations are treated as the control inputs to our model.
The Talon UAV flight data includes about 4500 seconds of flight data with data
collected at δ = 0.4 second intervals. We dropped the first 800 seconds that
consisted of take off followed by loitering. The subsequent 800 seconds of data
were used as the training set for inferring a data-driven model. The estimated
average wind speed was about 3 m/s. However, detailed wind data was not
collected for these experiments.

Data-Driven Model: We used regression to infer AR models for capturing the
deviations, as explained in Section 2. The value of the lookback (p) was chosen to
be p = 4, so that the overall standard deviation of the residuals was minimized.
The combined model has 30 state variables that include the positions (x, y, z),
velocities (vx, vy, vz), and the AR model states for ex, ey, ez, evx , evy , and evz . The
disturbances were taken to be normal random variable with mean and standard
deviations estimated from the residual errors obtained after fitting the AR model.
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(a) (b)

Fig. 2. Sample trajectory segments over time intervals (a) [1600, 1680] seconds and (b)
[4000, 4080] seconds from start of flight test. Two geofence boundaries are shown as red
lines. The monitor uses a time horizon N = 15 (6 seconds). Arrows denote the direction
of the UAV’s flight. Data points are shaded red if a violation results and blue/black
depending on the magnitude of the viability probability θ(t).

The mean values were very close to 0, lying in the range [−0.05, 0.05] in all
cases, and thus taken to be exactly zero. All calculations were performed in
Matlab(tm) running on a macbook pro laptop with 3.1 GHz Intel Core i7 and
16 GB RAM. The time taken to perform regression was less than 0.05 seconds.
The matrices A,B,C for the plant model are sparse and thus we use sparse
matrix manipulations available in Matlab(tm).

To what extent can a viability monitor be used to flag safety violations?
As mentioned earlier, viability and safety are rather different. On one hand,
the UAV can violate the geofence without causing a failure of viability. This
is because, there may always be a N step strategy to keep the violation from
happening, whereas the actual controller is unable to implement this strategy.
On the other, a loss of viability does not mean that safety will be violated. After
all, the environment may not have manifested its worst case behavior. Model
mismatch between the linear stochastic data-driven model and the underlying
nonlinear model can potentially make the issue of missed violations and false
alarms much worse. We will now perform an empirical evaluation of the viability
monitor, focusing on its ability to predict an impending violation as well as the
false alarm rate.

Figure 2 shows two example scenarios for a fixed geofence property shown,
each corresponding to roughly 80 seconds of flying time taken from our data.
We defined geofence boundaries and use our monitors with N = 15 to check
for viability. Note that in both, the viability monitor is able to provide advance
warning of an impending violation (shown using red circles). However, the via-
bility monitor differs from a safety monitor: this is clearly seen at points that are
shaded blue/black even though the UAV remains in violation of the geofence.
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Fig. 3. (Left): For each violation point, is there an alarm raised N steps in the past
for various values of N? (Right): For each alarm raised by the monitor, is there a
violation of the geofence N steps into the future?

This is because the monitor infers the existence of a strategy for the UAV to get
back into the geofence within the time horizon.

Empirical Evaluation on Randomly Generated Geofence Specifications: The em-
pirical evaluation is carried out over segments of the data past the initial 800
seconds of data used for training. We defined various randomly generated half-
spaces c1x + c2y + c3z ≥ d as the geofences to be monitored. For each such
geofence, we ran 30 monitors wherein the ith monitor has its time horizon of
N = i. First, we define violation points for the geofence, wherein time t is said
to be a violation point iff the position at time t violates the geofence whereas
the position at the previous time step t − δ satisfies the geofence specification
(see Fig. 3). We analyze our data in order to answer three questions Q1-3, with
Q1, Q2 focusing on missed alarms whereas Q3 focusing on alarms that do not
materialize in a violation.

1. Q1: How far ahead of a violation point do we obtain the earliest alarm
corresponding to that point?

2. Q2: What fraction of the violation points are alarmed by monitor with
lookahead time N = i for various values of i ∈ [1, 30]?

3. Q3: If a monitor with lookahed of i, raises an alarm at time t, does the UAV
position at t+ iδ violate the geofence?

We studied 250 randomly generated geofence specifications and instantiated
30 monitors for each specification with time horizons ranging from 1− 30. The
offline calculations yield matrices cTAN , cTBN and cTCN , wherein c represents
the normal vector to the hyperplane describing the geofence. The online monitor
uses the calculations presented in Section 4 using lower bounds and upper bounds
on the accelerations. These were taken to be ±2m/s2 for our calculations based
on the acceleration inputs observed in the actual data. For each state x(t) and
control u(t), we calculate θ(t) the largest value of θ for which the property of
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Fig. 4. (Left): Histogram showing the number of steps between a known violation
event and the earliest alarm corresponding to the event using monitors with time
horizon ranging from 1− 30. 0 steps is used to indicate that all monitors deployed did
not alarm for a given violation. (Right): The fraction of violation points successfully
predicted by a monitor looking ahead i steps for i ∈ [1, 30].

interest can be guaranteed to be viable. We use a threshold of 0.95 for reporting
violations: i.e., if θ(t) ≤ 0.95, we report potential violations.

Computation Times: First, we will analyze the overall computation times taken
for various phases of our approach. The model construction solving a linear
regression problem required 0.1 seconds using Matlab (tm) to solve the least
squares problem. The use of sparse matrix computations yielded significant sav-
ings in the overall computation time. The average offline computation time re-
quired for each geofence property was 0.15 seconds. This includes the offline
computation time for all the 30 monitors that were instantiated corresponding
to each geofence. Likewise, the average online computation time at each time
instant was 0.09 seconds for all 30 monitors. Recalling that the monitors looked
ahead between 1− 30 steps with 0.4 seconds/step, these times are much smaller
than the overall time horizon.

Analysis of Missed Violation Points: Figure 4 (left) plots the number of steps
between a violation point and the earliest alarm corresponding to that violation.
We use 0 steps to indicate that a violation point was missed by all monitors.
We note that 99% of the violation points are detected at least 1 step (0.4 sec-
onds ahead). In fact, nearly 98.5% of the violation points are detected 0.8 seconds
ahead, while 65% of the violation points are detected more than 2 seconds ahead
of time. At the other end, about 15% of the violation points are detected 12 sec-
onds ahead of time. Interestingly, we note a strong correlation between violations
that are predicted 15− 29 steps in advance and those predicted 30 steps in ad-
vance. In other words, most violations that are predicted 15 steps in advance are
also predicted 30 steps in advance.
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Figure 4 (right) focuses on individual monitors monitoring 1−30 steps ahead
in the future and the fraction of violation points successfully predicted by each
monitor. As expected, the monitors looking ahead less than 5 steps (≤ 2s) are
successful more than 90% of the time in predicting violation points, whereas
monitors 30 steps ahead predict less than 20% of the violation points.

Fig. 5. Fraction of false alarms for monitor
looking ahead N = i steps into the future
for i ∈ [1, 30]. Notice that the y-axis num-
bers are scaled by 10−3.

Overall, the analysis shows that
using a bank of monitors in paral-
lel wherein each monitor has a dif-
ferent lookahead time horizon can re-
duce the cumulative missed alarm
rate to less than 1%. However, this
also means that impending violations
may be caught as early as 12 seconds
in some cases, and as late as 0.4 sec-
onds in advance in some cases with
most alarms occuring between 2 − 4
seconds ahead of a violation.

Analysis for False Positives: Another
key issue is that of false positives. To
analyze for false positives, we focus
on each alarm raised by the monitor
that looks ahead N = i steps into
the future at time t and ask whether
the UAV violates the geofence at time
t + iδ. Figure 5 shows what fraction
of the alarms do not result in corre-
sponding violations i steps into the fu-
ture. We note that the false positive rate is quite tiny: I.e., most alarms do result
in violations.

6 Conclusions

To conclude, we present the notion of θ-viability and derive sufficient conditions
for monitoring whether or not a linear system driven by stochastic disturbances
is θ viable at its current state. We apply this to geofence monitoring of UAVs by
first building data-driven autoregressive models and then using these models to
build predictive monitors for geofences. Our experimental evaluation considers
data from an actual UAV flight and shows that the viability monitor can provide
useful advance warnings 5− 10 seconds before a violation. Our future work will
investigate strategies for model validation and updating, which is not studied in
this paper. We also plan to consider multi-modal approaches wherein different
modes such as loitering, turning and waypoint following are modeled differently.
The integration of richer onboard events in our model and monitor along the
lines of systems such as R2U2 remains an exciting avenue for future work [19].
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Also, our work is currently restricted to safety properties. Efficiently monitoring
viability of richer temporal properties remains an important challenge.
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